
The why, how, and when of representations for complex systems

Leo Torres
leo@leotrs.com

Network Science Institute,
Northeastern University

Ann S. Blevins
annsize@seas.upenn.edu

Department of Bioengineering,
University of Pennsylvania

Danielle S. Bassett
dsb@seas.upenn.edu

Department of Bioengineering,
University of Pennsylvania

Tina Eliassi-Rad
tina@eliassi.org

Network Science Institute and
Khoury College of Computer Sciences,

Northeastern University

February 12, 2021

1

Contents

1 Introduction 4
1.1 Definitions . 5

2 Dependencies by the system, for the system 6
2.1 Subset dependencies . 7
2.2 Temporal dependencies . 8
2.3 Spatial dependencies . 10
2.4 External sources of dependencies . 11

3 Formal representations of complex systems 13
3.1 Graphs . 13
3.2 Simplicial Complexes . 15
3.3 Hypergraphs . 15
3.4 Variations . 16
3.5 Encoding system dependencies . 18

4 Mathematical relationships between formalisms 22

5 Methods suitable for each representation 24
5.1 Methods for graphs . 26
5.2 Methods for simplicial complexes . 27
5.3 Methods for hypergraphs . 28
5.4 Methods and dependencies . 29

6 Examples 29
6.1 Co-authorship . 30
6.2 Email communications . 34

7 Applications 36

8 Discussion and Conclusion 37

9 Acknowledgments 39

10 Citation diversity statement 39

2

Abstract

Complex systems, composed at the most basic level of units and their interactions, describe phenom-
ena in a wide variety of domains, from neuroscience to computer science and economics. The wide variety
of applications has resulted in two key challenges: the progenation of many domain-specific strategies
for complex system analyses that are seldom revisited or questioned, and the siloing of representation
and analysis ideas within a domain due to inconsistency of complex systems language. In this work we
offer basic, domain-agnostic language in order to advance towards a more cohesive vocabulary. We use
this language to evaluate each step of the complex systems analysis pipeline, beginning with the system
under study and data collected, then moving through different mathematical formalisms for encoding the
observed data (i.e. graphs, simplicial complexes, and hypergraphs), and relevant computational methods
for each formalism. At each step we consider different types of dependencies; these are properties of the
system that describe how the existence of an interaction among a set of units in a system may affect the
possibility of the existence of another relation. We discuss how dependencies may arise and how they
may alter interpretation of results or the entirety of the analysis pipeline. We close with two real-world
examples using co-authorship data and email communications data that illustrate how the system under
study, the dependencies therein, the research question, and choice of mathematical representation influ-
ence the results. We hope this work can serve as an opportunity of reflection for experienced complex
system scientists, as well as an introductory resource for new researchers.

3

1 Introduction

The term “complex system” is used to describe a multitude of systems of markedly different scales, from
the atomic scale of interacting atoms to the vast scale of the whole universe, as well as markedly different
behaviors, from starling murmurations to the viral spread of information on social media. Though distinct
definitions exist, and not one is globally agreed upon, in general a complex system is (a) a collection of
objects or agents with high cardinality, which (b) interact with one another in a non-trivial way, such that
(c) the collective behavior of the system is unexpected, different than, or not immediately predictable from
the aggregation of the behavior of the individual parts. This unique collective behavior is often said to
emerge from the dynamics of the parts [103, 109]. For example, a population of neurons (units) connect
via synapses (interactions) and consequently can perform computations (collective behavior). Additional
real world examples include cellular reactions in photosynthesis, food webs in ecology, transactions in local
markets, interconnected world-wide trading in economics, and various technologies such as the Internet and
the power grid.

In order to study complex systems across disciplines and domains, it is important to concretely represent
the system using a unifying mathematical language. In recent decades, the discipline of network science
has arisen as the main focus of development of such a language [142]. Network scientists typically study
complex systems by first modeling them using the tools and frameworks afforded by disciplines such as
discrete mathematics and computational data structures. These formal frameworks, which we refer to as
formalisms (see Section 1.1), enable the application of tried and true methodologies coming from different
subfields within the mathematical, physical, and computational sciences. Furthermore, these formalisms
allow for the execution of efficient algorithms and can be used to infer structure, function, and dynamics of a
system. What makes this process somewhat challenging is that each encounter with a new complex system
requires the construction of a new representation tailored to it. Network science is far from developing a
single, unified representation that allows the study of all possible system structures and behaviors [115].
Indeed, there is currently not one, but a wealth of related frameworks, each of which captures particular
perspectives and properties of the system under study.

This wealth of frameworks, and the resulting wealth of accompanying analysis pipelines, creates challenges
for the study of complex systems. It hinders interdisciplinary communication, as researchers in one discipline
may be unfamiliar with the representations and analyses used in another. Even within a single subfield,
various approaches to represent and analyze the same complex system can hinder collective insight across
research groups or projects [34]. As a consequence, it is difficult and sometimes impossible to gather insight
across systems, which directly hampers the progress of complexity science [133]. As researchers striving for
precision and efficiency, we must address this challenge by understanding the assumptions underlying each
formalism, as well as the relationships between formalisms, and the impact of both formalism assumptions
and relations on our analyses and interpretations of results.

In this work we aim to collect and align complex system analysis pipelines – from raw data procurement
and clean-up to analysis results and final conclusions – while providing a common vocabulary for a continued
discussion. While achieving a single, unified language is unlikely, we can at the very least begin to simplify
and condense the pipelines currently in use. For clarity, we begin by defining the fundamental terms used
throughout the paper. The main text follows the flow of Fig. 1, which illustrates a simplified represen-
tation of the analysis pipeline used when studying a complex system, insofar as it pertains to the formal
representation of the system. We begin with an investigation of common system properties that can lead
to biased analysis results if ignored, which we call dependencies, followed by definitions of three mathemat-
ical formalisms commonly used for representation. Next, we highlight mathematical relationships between
formalisms that one might utilize in order to answer particular research questions, and finally we provide
examples of computations suited for each of the three formalisms. Throughout the text we repeatedly ask
how these dependencies and other modeling choices may influence the pipeline steps discussed. We provide
two examples using a co-authorship dataset and the Enron emails dataset [23] to demonstrate the effects
of various analysis pipelines on the results obtained from the same underlying system. Finally, we close by
suggesting that each modeling decision in a research analysis pipeline be taken on a case-by-case basis and
in consideration of the dependencies, formalisms, relationships, and research questions.

4

Figure 1: Prototypical analysis pipeline for complex systems. We begin with the system under study,
and ask what sorts of elementary units exist, what relations exist that group elements together, and what
dependencies might influence the existence of relations among units. We then turn to the question of how to
represent the units, relations, and their dependencies; to answer this question, we must choose a formalism.
Finally, we seek to interpret the outcomes of computations performed on the representation, and from those
interpretations we reach a conclusion about the structure and function of the system.

1.1 De�nitions

In this work we use a consistent language to allow for effective and precise communication between scientists
across disciplines. Here we provide a list of terms that we will use throughout this paper and their definitions.
By condensing the vocabulary and providing precise definitions of often abstract concepts, we hope to
operationalize the study of the structure and behavior of complex systems.

� Unit, element, or node: an individual object, agent, or part of a system. Unless otherwise specified,
we denote the set of n nodes by V = fv1; v2; : : : ; vng.

� Relation: a set r of one or more nodes, such that r � V . In practice, node relations can arise from
correlations in data, observed interactions between units, or groups of elements known to function
collectively. A relation r can be dyadic if it contains exactly two units (jrj = 2), or polyadic if the
relation contains three or more units (jrj > 2). If r contains k nodes, then we say the k nodes in r
are related. In some parts of the literature, polyadic relations have also been called “higher order”
relations, and have been used to refer to motifs in graphs [24]. To avoid confusion, however, in this
paper we will use “higher order” to refer exclusively to a particular formalism introduced in Section
3.5. We denote the set of relations by R unless a domain-specific convention already exists.

� Property: information attached to a node or relation. We call the set of properties P and let p be
the assignment map sending V �R !P. For example, a relation formed by the co-firing of neurons
can be assigned a frequency, and a relation formed among individuals can have a categorical property
such as “teammates”. In this work we focus on the units and relations in a complex system, as these
are common to all complex systems. Additional properties, including dynamics, are also crucial for
system function, but our scope is limited to the structural representation of complex systems.

� System: a collection of units V , relations R, and (optionally) any properties P, such that the
collection needs no other pieces in order to function completely or to interact autonomously with its
environment. The set of units are the components of the system, while the patterns found in the set of
relations are called the system’s structure. An example of a such pattern would be finding a particular
node involved in far more relations than expected. The system’s activity, including changes in nodes,
relations and properties over time, is sometimes called its function or behavior. An example of behavior
would be finding that a the number of relations a particular node is involved in fluctuates over time.

5

� Complex system: a system whose units and relations together exhibit a qualitatively different func-
tionality than the sum of its units acting individually; the main object of study. In this work, “system”
always refers to a complex system.

� System fragment: a subset of the nodes and relations of a system. Formally, if we write a system as
a tuple of nodes and relations (V;R), a system fragment would be written (V 0;R0) with V 0 � V and
R0 � R a set of relations on node set V 0. Researchers usually do not have access to all units or all
relevant relations. Instead, they usually have access to – and must perform their studies on – fragments
of a system. Sometimes this limited access is due to the vast number of units (a human brain contains
on the order of 1011 neurons); other times it is due to the inability of our current tools to record all
the relations among them (genes that express at low levels are difficult to detect); still other times it is
due to other constraints (social media companies may not release their data due to privacy concerns).
We do not require a system fragment to itself operate as a system; that is, a system fragment may not
necessarily have the ability to fully function or interact with its environment. Consider the complex
system of cell metabolism in humans. Even with contemporary tools, we do not have access to all data
pertaining to this system. In order to study it, we usually focus on a single aspect most relevant to
the question at hand; for example, the set of all experimentally quantifiable proteins (units) and the
set of known protein complexes that they form (relations). We refer to the combination of these two
sets as the “protein complex fragment” of the cell metabolism system.

� Dependency: a property of a system in which the existence of one relation provides information
about the existence of another relation. In this case we could say one relation is dependent on another
relation. Conversely a relation is independent from another relation if the existence of one relation in
no way affects the (probability of the) existence of the other. See Section 2 for formal definitions of
the three types of dependencies we discuss in this work.

� Formalism: a mathematical framework or theory (a collection of definitions, results, and theorems)
that can be used to represent, model, encode and study a complex system. In this paper, we will
explicitly discuss the graph, simplicial complex, and hypergraph formalisms.

� Representation: a mathematical or computational encoding of a specific complex system (or a
fragment of one). A representation is the materialization of a specific formalism, e.g. it is one concrete,
specific graph, as opposed to the mathematical theory, or formalism, of graphs.1 For example, one
might study the brain by representing it as a graph with a node for each lobe and edges joining
two nodes if they are physically adjacent. In this case, the brain is the system, graph theory is the
formalism, and the graph of n nodes that mirrors the brain connections is the representation.

� Encode: the process of taking a system or data collected from a system and formulating it as a
representation using a specific formalism.

In the rest of the paper we will assume the reader has already defined what should constitute a node and
relation within their system. We refer the reader to [37] for a thorough discussion regarding how to choose
nodes and relations when these choices are not straightforward.

2 Dependencies by the system, for the system

When studying or modeling a complex system composed of many parts, several design decisions must be
made. We begin by considering one specific and rather fundamental choice, which is sometimes only implied
and other times outright neglected. This choice regards the decision of which system dependencies one should
seek to appropriately and accurately encode. Reiterating our definition above, a dependency is a property
of the system in which the existence of one relation provides information about the existence of another

1For readers familiar with object-oriented programming, we liken the di�erence between \formalism" and \representation"
to that between \class" and \object".

6

relation. Said another way, does the system have underlying rules or restrictions that cause interactions to
occur or units to behave in particular ways? For example in a social system of individuals and friendships, if
two individuals live physically close to one another, then their likelihood of becoming friends is larger than
if they lived far apart. Furthermore, if they live near each other, then they are also more likely to meet
and consequently befriend each other’s neighbors. In this way, knowledge of the existence of one friendship
informs us of the possible existence of other friendships, because the friendships (relations) between people
(units) are affected by geographical distance (dependency).

Such system-level dependencies can manifest in different ways; here we will constrain ourselves to a
discussion of three of the most commonly observed dependency types. Specifically we discuss subset depen-
dencies (does a large relation influence the existence of smaller sub-relations?), temporal dependencies (does
temporal nearness of elements influence their relations?), and spatial dependencies (does the physical prox-
imity of elements influence their relations?). We acknowledge that dependencies other than those described
in this work exist within real-world systems; in many domains of inquiry, ongoing research efforts seek to
define the proper avenues for illuminating dependencies and approaches for their incorporation.

2.1 Subset dependencies

When investigating a complex system, we often record its elements and the observed relations containing two
or more of those elements. For example, we might record objects and shared observable features [128], people
and shared conversations [229], or neurons and their co-firing [53]. Here, we can think of the system as a set
of nodes V and a set of observed relations R in which each relation r 2 R is a subset of V and is meant to
represent one observed interaction between k elements. In this setup, some nodes may participate in many
relations, while others participate in very few or none at all. It is then important to ask: if we observe the
relation r = fv0; : : : ; vk�1g 2 R, does it imply that some subset r0 of r is also a relation? If so, the system
exhibits the type of dependency that we call a subset dependency. For example, in the words-and-features
system fragment, if three words (ball, egg, globe, written as v1; v2; v3) correspond to objects that share a
particular feature (each of them is round, so that ‘is round’ defines a relation r = fv0; v1; v2g), then any two
of the objects must also share that same feature (then r0 = fv0; v1g; r00 = fv1; v2g; and r000 = fv0; v2g are
all relations). One can make a similar argument for people conversing with one another and for neurons co-
firing. In these cases, every subset of any set of related nodes is also related. However, we will see examples
later when only some, or none, of the relation subsets are also relations, and we will describe this scenario as
indicating the presence of a different type of dependency. Concretely, we will say that a system with nodes
V and relations R exhibits a subset dependency if for r 2 R and r0 � r, we must have that r0 2 R whenever
P (r0) is true, where P is some logical predicate. For instance, in the words-and-features system, the logical
predicate determines whether words corresponding to objects share a feature. In that system, since a subset
of words for objects in a relation always share a feature, the logical predicate is always true, and we see
clearly that a subset dependency exists in the system.

To illustrate this specific type of dependency, in Fig. 2 we show a system fragment of chemical reactions
(left) and a system fragment of objects with shared physical descriptors (right). On the left side of Fig. 2,
molecules or compounds correspond to nodes, and reactions define relations between nodes so that if k
compounds together exclusively form the reactants and products of one reaction, then those k nodes are
related. We see that O2 and H2O participate in multiple reactions together, for example 2H2 +O2 ! 2H2O,
but we do not observe a reaction that exclusively uses O2 and H2O. Therefore this system fragment does
not display the property that all subsets of relations are also relations, since we have that fO2; H2Og �
fH2; O2; H2Og and fH2; O2; H2Og 2 R, but that fO2; H2Og 62 R. In contrast, the right side of Fig. 2 shows
a collection of objects and features (shape and color), in which each object may share physical features with
other objects. In this case a relation r� = f ; ; g contains all objects that are square. Notice that by
our definition of relation for this system fragment, we immediately get that r0 = f ; g is also a relation.
Specifically, the pink and red squares are related because they share the feature “square”, but also any subset
of the squares will also be related because they, too, share the feature “square”. This example of objects
and shared features does display the subset dependency, since subsets of related nodes are also related.

7

Figure 2: Are subsets of related nodes necessarily related? Systems may exhibit a subset dependence,
which occurs when a relation between nodes implies the existence of a relation between any subset that
satisfies a certain logical predicate. (Left) System fragment composed of molecules and chemical reactions.
Here, O2, H2O, and H2 participate in the reaction O2 + 2H2 ! 2H2O, but a subset of these compounds
does not independently engage in a reaction, such as O2 and H2O. (Right) System fragment composed of
objects with observable features such as color and shape. All objects that are squares are related by the
presence of the shared feature ”square”. Any subset of these square objects will also still possess the shared
feature ”square”, and thus will also be related. In this case, the logical predicate is always true.

When a system displays a subset dependency, we must ask ourselves whether we should explicitly rep-
resent that property in our model. The answer to that question will depend on, among other things, the
available data, the research question, and how we define relations among nodes. Incorporating the subset
dependency in a representation usually requires the data to include polyadic relations, which are not always
directly observable. Additionally if the research question involves trajectories through related nodes, it may
or may not be necessary to incorporate polyadic relations and thus the system’s subset dependencies explic-
itly, since often we can answer questions about trajectories between nodes using exclusively dyadic relations
between nodes.

Most commonly, the choice of whether to include the subset dependency affects the formal representation
used to encode the system, and consequently the results of downstream analyses. For example, if Marta is
involved in a group of people having conversations and we define relations as shared conversations (so that
a subset dependency exists), then if we count the number p of people with whom Marta converses we do not
know if Marta had p separate conversations with each of the p individuals, or if she participated in one large
conversation with all p people. Without a distinction, Marta’s popularity with others could be vastly over-
or under-estimated. This example illustrates how the occurrence of subset dependence can be determined by
the definition of relation. In Section 3 we explore the benefits and drawbacks of a few abstract formalisms
that capture different types of dependencies. For now, we stress that the presence or absence of subset
dependencies influences the computations we can perform and the formalisms we can use.

2.2 Temporal dependencies

Next we consider systems in which we observe information, individuals, or goods moving along trajectories
through time. A simple example would be a city subway system where passengers ride the train from one
stop to the next until they reach their destination. In such systems we must ask the question: Does the
current location of an individual affect where they might move next? We say a system exhibits a temporal
dependency if the existence of relations at time t a�ects the behavior of units or relations at time t0 > t. Said
another way, it may be that trajectories or walks within systems that display temporal dependency are not
Markovian, since the future trajectory of a walker depends not only on its current location but also on some
previous trajectories of itself or other units.

Consider a subway system in which passengers can travel via trains to stations A through H (Fig. 3). If

8

Figure 3: By incorporating temporal dependencies into the representation, we obtain a more
accurate subway map. Given data from six commuting passengers (P1, P2, ..., P6) who do not switch
trains (top left), how can we obtain the underlying subway map? We could create a graph in which two
stations are connected if a passenger transferred from one station to another. However, such a graph would
suggest that a passenger could commute from station B to F without switching trains (bottom left), which is
not possible in this system. If instead we untangle the subway lines by respecting the temporal dependency
and treating trains that arrive to station D from station C as different from those arriving from station
B, then we can clearly see the necessary transfer between subway lines required for the B to F commute
(bottom right).

our complex system consists of passengers commuting via the subway, then our observed data might include
explicit passenger routes. For example, in Fig. 3 we record the routes of six passengers, each of whom
commutes from the suburbs (stations A, B, and C) to downtown (stations D, E, F , G, and H). For the
purpose of the example, we assume that passengers do not transfer between distinct train lines during their
commute. If we now represent our data as a set of stations (units) and we connect two stations i and j if j
immediately follows station i in at least one passenger route (relations), we obtain the subway map shown
in the bottom left of Fig. 3. Because this diagram records all known movements of passengers between pairs
of stations, we might confidently proceed to the next analysis step. However, it is worth noting that this
particular representation suggests that the red path from station B to station F is a possible commute for
a passenger. Yet when we look back at the data itself, such a commute seems extremely unlikely since the
sequence B �D � E � F never occurs. The fact that this route appeared natural from the representation,
but not from the data, points to the fact that our system contains a temporal dependency and, importantly,
that this dependency is not well reflected in the particular representation we chose.

As discussed in great detail in [24, 174, 69, 59, 118, 158], the fundamental limitation of keeping only
pairwise sequential relations, as done in the bottom left of Figure 3, is that in the representation we assume
that traversal across each link is Markovian and therefore its probability is independent of the probability of
traversing any other link in the system. More explicitly, paraphrased from [117], by representing the system
as a graph (see Section 3 for a definition) we assume that the edges (i; j) and (j; k) are independent and

9

Figure 4: Spatial dependencies within a system can complicate our representations of the data.
In our example system, we have (Left) connection information that is independent of any system embedding,
and (Middle) spatial information indicating where the nodes physically reside. A possible combination of
the two information types (Right) can be used to better understand the physical constraints on the topology.
If long distance connections are costly for that system, the combined representation allows the investigator
to assess the prevalence and location of those costly (and thus potentially surprising) connections.

that the two-step transition from i to k proceeds in two independent steps. This assumption can easily be
violated by a real system, as seen in our toy example, since sometimes one step in this traversal is dependent
on which steps came before (i.e. transitions are not Markovian). Mismanaging temporal dependencies in
systems can lead to misleading results that can, for example, over-represent the importance of edges rarely
used or create non-existent connections. We will discuss a formalism that is particularly appropriate for
representing temporal dependencies in Section 3.

2.3 Spatial dependencies

The third and final type of dependency that we discuss here arises from the physical nearness of units within
a system. For example, in the human connectome a brain region is likely to extend white matter tracts to
neighboring regions, providing physical conduits for electrical activity [200]. In granular materials, resistance
to external forces relies on interactions between only particles that physically touch [156]. More generally,
many spatial systems are so named because the spatial location of nodes affects their likelihood of interacting
with one another [13, 14]. Here we say that a system exhibits a spatial dependency if the distance between two
or more nodes in
uences the existence of a relation that contains them. More formally, consider a system
whose nodes are labeled by V = v1; v2; : : : ; vn and each node vi has associated to it a point xi in some
metric space. Then, this system exhibits a spatial dependency if the probability of a relation between nodes
v1; v2; : : : ; vk is a function of the pairwise distances between the corresponding locations x1; x2; : : : ; xk.

Many such systems exist in the natural and manufactured world. Indeed, spatial restrictions influence
communication in cell populations [116, 165], trade in economic networks [98], and passengers in transporta-
tion networks [221, 122]. As an example of spatial dependency within an abstract system, we might begin
with only knowledge of the pattern of related nodes. We display this structural information in the left panel
of Fig. 4 with circles corresponding to nodes and lines joining circle pairs whose corresponding nodes are
related. From the structural information alone we might expect that relating the pink and red nodes is just
as difficult or costly as relating the red and dark red nodes; we might therefore infer that the two relations
are equally crucial to the system’s function. However, if the system exists within an environment containing
coordinates and a distance function, with each node having spatial coordinates and a measure of distance
between each pair, then this spatial information could offer a different perspective on the system. In the
middle panel of Fig. 4, we see that the nodes, now depicted with colored pins, are spread out so that some
are more spatially clustered whereas others are less so. Considered alone, the spatial information gives us
no insight into the actual relations present in the system, but does provide information with which we might

10

predict the likelihood that nodes are related.
In many spatial systems such as the brain or city transportation, relations between distant nodes are

unfavorable due to a higher cost of creation and maintenance, while short-range relations are far easier to
construct. In the face of this association between the physical distance across a relation and its cost, we might
consider the distances between nodes and infer that the red and dark red nodes are likely to be related, while
the pink and red nodes are not. When we finally combine the topological and spatial information (Fig. 4,
right), we then can leverage the two information types to understand which relations are most surprising or
make hypotheses about which relations are most important to the system. For example, the dyadic relation
between the pink and red nodes might be very costly given the long distance, so we might infer that the
pink to red relation is more essential to the system than the red to dark red relation since the system would
only spend valuable resources to maintain such a relation if it was integral to system function. Without
the spatial information, we may have incorrectly placed the same importance on the pink-to-red and the
red-to-dark red relations. This example highlights one of many ways in which we could integrate spatial and
structural information.

As with the previous dependency types, failure to account for a spatial dependency can greatly bias our
models and results. Consider an outbreak of a contagious disease. If we recorded the habits of infected
individuals such as their diet, but fail to record their locations and physical mobility through space [208, 7],
then we might – for example – wrongly attribute disease spread to the broad consumption of a particular food
that is prevalent in the infected region instead of through person-to-person contact. As another example,
social contacts are also influenced by proximity. If we return to evaluating Marta’s popularity, the observation
that she has many friends may come from the fact that she lives in a densely populated area, rather than
from her charisma or personality. In these examples, failing to account for spatial dependencies may result
in attributing certain structural properties of the system to the wrong cause.

2.4 External sources of dependencies

Before we shift our focus to concrete ways of encoding system dependencies using mathematical formalisms
(Section 3), it is useful and interesting to consider how external forces can influence the observed system
dependencies. Ideally, we as investigators would have the ability to measure all dependencies within the
system under study, and then use this knowledge to make an informed decision as to the appropriate
formalism with which to model our system. However, often the processes of scientific inquiry do not proceed
so effortlessly: no analysis is ever devoid of the influence of external factors, or biases. Our goal in this
section is to highlight possible sources of such bias. Although we have already discussed biases arising from
dependencies native to the system under study, here we emphasize that acknowledging and understanding
dependencies imposed by outside sources should also play a crucial role in determining an appropriate
representation and subsequent analyses.

� Data availability. One notable and common constraint in science is the limited data that can be
empirically acquired from a given system. In other words, researchers usually have access only to a
fragment of the system. As a consequence, any dependency that is observed and ultimately encoded
may be determined more by the sparsity of available data than by the system’s true structure and
function. For example, one may have access to only sparse snapshots of or short sequences from
an evolving system [188], making the subset dependency difficult to identify and effectively encode.
Particularly, there may not be enough data available to correctly deduce the predicates P that a subset
must satisfy in order to also form a relation (see the definition of subset dependency in Section 2.1).

� Data acquisition or processing. Certain experimental techniques or computational procedures
may produce spurious dependencies. A common example involves correlation matrices. By computing
the correlations of node activity (a common approach in fMRI-based functional connectivity matrices
[211, 88]) one induces a transitivity dependency, which is a type of subset dependency. Concretely, if
A;B;C are nodes in a system where two nodes are related if the time series of their activities are highly
correlated to each other, as determined by some data acquisition method, then whenever A and B are

11

Figure 5: Understanding system dependencies is a �rst step in the complex system analysis
pipeline. Types of dependencies include spatial, temporal, and subset dependencies. Acknowledging de-
pendencies at this step allows for proper preservation of dependencies throughout the rest of the analysis
pipeline. When preserving all dependencies is not possible due to factors outside the control of the researcher,
acknowledging this inability frames the results in a proper context.

related, and B and C are related, it is highly likely that A and C are also related. In this case, it is
possible that relations between nodes implied by the calculated correlations are found in the processed
data but not in the system itself. For example, one might find that changing the type of correlation
results in a change in the inferred relations.

� Research question. The research question at hand will influence which relations within a system
are particularly interesting. Moreover, it may also influence the very definition of a relation. For
example, consider a system of proteins that interact to form protein complexes. If we wish to study
which proteins appear together in many complexes, then we may define a relation as k proteins that
participate in the same complex. If instead we wish to study protein complexes themselves, we could
define a relation as a set of k proteins that all together form a single complex. In the first case, the
relations are tied to a subset dependency (if three proteins appear together in a complex, then so do
any two of them), but the second does not. On the flip side, a given research question may neglect a
relevant dependency in the system. For example, we could ask if a common food could have caused a
disease outbreak. Answering that explicit question neglects the fact that individuals near each other
will likely eat similar foods. The research question is not broad enough to incorporate the spatial
information as part of the answer, and therefore spatial dependencies may seem irrelevant at first
sight, when they may be in fact essential to finding the real answer. We expand upon this topic in
Section 3.5.

To summarize, we have defined and discussed three types of dependencies that could exist in a complex
system: subset, temporal, and spatial. We emphasize that dependencies can arise from within the system
itself or from external factors, but regardless of their origin, we as researchers must be aware of their existence
and how they influence our models and results, especially given their early position in our analysis pipeline
(Fig. 5). As we will continue to see in the sections that follow, the recognition and encoding of dependencies
can greatly affect the results of our analyses and the conclusions that can be drawn.

12

3 Formal representations of complex systems

Over the years many representations of complex systems coming from different mathematical and computa-
tional formalisms have taken hold across scientific disciplines. Different formalisms allow for the modeling
of unique aspects and dependencies of each system, but the multiplicity of available formalisms presents
challenges for the communication, collaboration, and ultimately the progress of complexity science. Further-
more, the choice of formalism also complicates the analysis pipeline that researchers must decide upon when
studying a particular system.

Here we discuss three of the many possible mathematical formalisms that researchers commonly use
to represent their system: graphs, simplicial complexes, and hypergraphs, chosen for their prevalence in
the complex systems literature. A complex system is, at its core, a collection of units and their relations,
therefore we require our representations to mirror this composition of units and relations. The units of
all three formalisms discussed here are called nodes. Graphs represent pairwise relations among nodes as
edges. Despite their simplicity (or perhaps because of it), graph representations have supported several
important discoveries such as the prevalence of small-worldness in real-world networks [220, 6]. Still, graphs
can only, by nature, represent dyadic relations between nodes2. If instead relations within the system exist
between more than two nodes, one might turn to either a simplicial complex or a hypergraph. Both of
these formalisms naturally allow us to encode such polyadic relations [21]. The relations represented by a
simplicial complex are called simplices and those represented by a hypergraph are called hyperedges. We
will first define each formalism, so that later in this exposition we can explicitly discuss their respective
advantages and assumptions.

3.1 Graphs

The first and perhaps most common formalism used to model complex systems stems from graph theory.
A graph G is a collection of nodes and edges between nodes such that an edge connects at most two nodes
(Fig. 6, left). We denote the set of nodes as V and the set of edges E � V � V , so that a graph is defined
uniquely by G = (V;E); note that each edge is an unordered set of two nodes. The nodes of a graph are the
units, and edges describe how these units are related. If vA and vB are nodes of the graph, then we write
(vA; vB), or vA � vB to represent the fact that the two nodes are connected by an edge. Studies that form a
graph representation from the underlying data frequently involve finding densely connected sets of nodes or
determining how an object might traverse the structure. In using the graph representation, such questions
could lead to detecting cliques or communities in the graph, or identifying chains of connected nodes called
paths (see Fig. 6, left, and Section 5.1 for more examples).

Many attribute the origin of graph theory to Leonhard Euler in the 18th century [74]. One can also trace
its presence outside of mathematics back to the use of sociograms and social network analysis in the 1930s
[78], and to graph-like data structures in computer science in the 1950s [222]. Notably, the use of graphs
to model more general complex systems has rapidly increased over the past few decades, driven largely by
the discovery of the small-world effect [220] and heavy-tail degree distributions [10] in real-world datasets.
Encoding a system as a graph has the great advantage of hundreds of years of mathematical theory behind
concepts, generally simple computations, and insightful visualization. However, the graph by definition
assumes that relations between nodes occur exclusively at the pairwise level. Systems such as transportation
networks might solely contain pairwise relations among their units, but many others, especially from biology,
often have polyadic relations. Still, the graph’s ability to model systems has proven quite useful in distinct
fields such as neuroscience [17, 36], computer science [75, 132], and ecology [161, 135].

2More precisely, edges in a graph can only involve (at most) two di�erent nodes. Whether the interpretation of each of
those nodes is that of a single unit or many units (as is done for example in some representations that involve the idea of a
\supernode"), is not a relevant matter for graph theory, but for the process of encoding data into a graph.

13

Figure 6: Three types of formalisms composed from nodes and relations. (Left) Graphs involve units
called nodes and relations between two nodes called edges. Possible features of interest for graphs include
all-to-all connected sets of nodes called cliques, as well as routes between nodes called paths. (Middle)
Simplicial complexes can be used to represent systems with polyadic relations among units. Sets of related
nodes are connected by simplices. A k-simplex describes k + 1 nodes that collectively interact, such that
any subset of nodes forming a simplex must also form a simplex; this is called “downward inclusion”. Motifs
of interest include topological cavities and maximal simplices. (Right) Hypergraphs can also be used to
represent systems with polyadic relations among units. Sets of related nodes are connected by hyperedges.
Hypergraphs are not restricted by downward inclusion. Of particular interest within a hypergraph is the
absence of a substructure (or smaller relation), for example in which two nodes do not connect dyadically
but participate together in a hyperedge that connects a superset of the node pair.

14

3.2 Simplicial Complexes

The next formalism that we consider addresses the need to acknowledge polyadic relations in the system.
Illustrated in the middle column of Fig. 6, a simplicial complex is a set of nodes V (also called vertices
in the field) along with a collection of subsets of nodes R (often denoted by K in the field) such that for
any r 2 R and r0 � r, we have r0 2 R; we will refer to this condition as “downward closure”. A set of
k + 1 nodes r 2 R is called a k-simplex, and downward closure requires that any subset of nodes within a
simplex also forms a simplex. In practice we often imagine a k-simplex to indicate an application-relevant
interaction between the k + 1 nodes, such that these nodes may function in unison. The simplicial complex
(precisely, the abstract simplicial complex) would then record the individual units (nodes), the functional
building blocks (simplices), and how all these building blocks are assembled into one system (the simplicial
complex). Since subsets of simplices are simplices by definition, then if k nodes are related, we have that
any subset of those k nodes are also related. The simplicial complex can be written as a binary incidence
matrix of dimensions #maximal simplices � #vertices where an element containing a 1 indicates node
participation in the corresponding maximal simplex; a maximal simplex is a simplex that is not contained
in any larger simplex.

Although algebraic topology has been studied for well over a century, it was not until the late 1990’s that
applied algebraic topology as a discipline began to emerge [230, 68] (though we note a earlier uses exist [9]).
Many of the earliest studies used applied topology and simplicial complexes to study data in the form of
point clouds [40, 189]. Later, it became clear that the simplicial complex language was a natural formalism
for explicitly representing biological and physical systems. For example, simplicial complexes have been used
to represent neural recordings [86, 53], classify images [203, 55, 66], and describe the mesoscale architecture
of brain networks [201, 202, 167, 191, 159]. Even more recent work has focused on defining generative models
to construct simplicial complexes with given topological features [51].

3.3 Hypergraphs

The final formalism that we consider draws again from sets of nodes and their relations, yet is even more
general than the simplicial complex discussed above. The hypergraph is an extension of the mathematical
definition of a graph, in which we have a node set V and a hyperedge set R (sometimes denoted in the
field as E). A hyperedge e 2 R can connect an arbitrary number of nodes. That is, while an edge in a
graph can only connect two nodes, a hyperedge can connect three, four, five, or more nodes (Fig. 6, right).
More rigorously, a hypergraph is a pair (V;R) with V a node set and R a set of subsets of V [214, 26].
In contrast to the simplicial complex, we can use the hypergraph to encode polyadic relations without the
restriction of downward inclusion. Formally, a subset e0 of a hyperedge e, e0 � e 2 R, does not necessarily
exist as a hyperedge. Additionally, we can rewrite a hypergraph as a binary incidence matrix of dimensions
#hyperedges�#vertices in which an entry of 1 indicates the node participation in the hyperedge.

As noted above, the crucial restriction that is relaxed when moving from a simplicial complex to a
hypergraph is that of downward closure. Recall that in a simplicial complex any subset r0 � r of a simplex r
must also be a simplex. Hypergraphs do not obey this rule. For example we may see a hyperedge connecting
vertices v1; v2, and v3 but no hyperedge that connects v1 to v2 exclusively. Or, given two hyperedges
connecting nodes v1; v2; v3, and v2; v3; v4, if a hyperedge connecting v2; v3 also existed, does this smaller
hyperedge indicate a sub-relation for the hyperedge v1; v2; v3, the hyperedge between v2; v3; v4, neither, or
both? With a hypergraph, we cannot determine how or if a sub-relation emerges due to superset relations
(see [195] for a deeper discussion). This subtle difference allows hypergraphs to represent a wide diversity
of systems, including many that the simplicial complex formalism would not appropriately represent. The
hypergraph’s increase in modeling flexibility is counterbalanced by a decrease in formal analysis methods,
which we will discuss more in Section 5.

The flexibility and ability to model polyadic relations made hypergraphs an appealing formalism in
many systems that were originally studied with graph theory. Indeed one of the earliest practical uses of
hypergraphs was to understand social networks [184]. Since then, researchers have successfully employed
hypergraphs to study polyadic relations in the Enron email dataset [162], find the core of yeast protein-protein

15

interactions [163], uncover motifs in neurodevelopment [89], track changes in evolving systems [18, 56, 57],
and detect failure in biochemical networks [110]. As many uses of hypergraphs arose out of systems first
modeled with graphs, many analysis methods for hypergraphs mimic those originally used for graphs (we
discuss this point further in Section 5.3).

3.4 Variations

We note that the above descriptions only scratch the surface of complex system encoding possibilities. An
ever broadening set of scientific questions drives the need for novel variations of each formalism, resulting
in a myriad of definitions and manipulable parameters. One could extend our mathematical definition of
complex systems to include the following properties, as a map p : V �R!P where P is a set of properties
we care about, as mentioned in Section 1.1. Here we note a few of the most common modifications to each
of the above formalisms, driven by the need to incorporate more information about the system at hand.

Directed

Many complex systems including the brain, transportation networks, and metabolic pathways exhibit direc-
tionality in their relations. That is, in these systems, if vA and vB are units that share a dyadic relation,
there is a meaningful distinction between a relation where vA comes first, one where vB comes first, and
one where either vA or vB comes first (but there must always be an order in how they are related). To
distinguish these cases we write vA ! vB , vB ! vA, or vA $ vB , respectively. If we apply this idea to
the graph formalism, a directed graph is one where each edge is now an ordered set of two nodes. Directed
graphs have proven extremely useful in many contexts from scheduling and monitoring workflows [112, 1]
to cardiac excitation modeling [212] to understanding percolation processes relevant to wild fires and other
explosive phenomena [197, 65]. Moving to simplicial complexes, directionality is still quite natural. Indeed
simplices themselves inherit a directionality, formally known as an orientation, encoded by the numbering
of the participating vertices. In practice, in an oriented k-simplex, each node is made to point only to
nodes with a higher assigned number. Oriented simplicial complexes arise in practice from directed synapses
between neurons [167] as well as directed migration flow [100]. Finally, in hypergraphs, one may represent
directionality with hyperarcs, the term for a directed hyperedge. More formally, a hyperarc is a pair of
disjoint subsets of vertices with one subset comprising the sources and the other subset comprising the sinks
[82]. Directed hypergraphs have proven useful in constructing a biological pathway database [113], tackling
problems in computer science such as propositional logic [82] and combinatorial optimization [119, 87], and
finding specific patterns of connectivity in chemical reaction systems [149], among others.

Weighted

In real-world systems, not all relations are created equal; even within the same system, relations between
individual units may vary in strength or magnitude. To represent these differences, the strength of a relation
can be encoded using the weighted versions of the above formalisms. To assign weights to any of the above
encodings, we can define a general weight function W : R ! R from the set of relations R (edges, simplices,
or hyperedges) to the real numbers R. For a graph, this function would assign a value to each edge, which
we generally interpret as the strength or frequency of the pairwise interactions between the corresponding
nodes. In the context of weighted representations, the original versions containing no weights are called
binary or unweighted, as they can be cast as weighted objects where the weights of all relations are either
one, if they exist, or zero if they do not exist. The brain connectome, traffic between municipalities [62],
and functional similarity of genes [153] have all been modeled as weighted graphs. Additionally, many
common graph metrics such as the clustering coefficient and path length (covered in more detail in the next
section), extend easily to the case of weighted graphs [175], making this variant of representation particularly
pervasive. Similarly we can construct a weighted simplicial complex by assigning a weight to each simplex.
However, recall that in a simplicial complex any face of a simplex must also be a simplex, and thus if we
have a relation between k nodes then any subset of these nodes must be related to at least the same extent

16

as the superset. Said another way, we require that the weighting function W on simplices adheres to the rule
that for any simplex r, if r0 � r then W (r) � W (r0). Weighted simplicial complexes can arise from point
clouds with inverse distances between points as weights or from growing processes with time of addition
used to assign simplex weight. Perhaps most often, we study weighted simplicial complexes through the lens
of persistent homology, which computes the organization of topological cavities housed within the weighted
simplicial complex [230, 39, 83, 148] (see a few recent uses in [191, 86, 159, 201]). Lastly, in hypergraphs
we can naturally weight hyperedges with distinct values [82]. Importantly, weighting hyperedges allows
more flexibility in choosing weights, as weighted hypergraphs do not enforce rules restricting weights on
subedges in contrast to weighted simplicial complexes. Weighted hypergraphs have proven useful in image
segmentation [169] and in the process of incorporating prior knowledge into learning algorithms [207].

Dynamic

Complex systems such as cell signaling, traffic patterns, and transactional relations also grow, separate,
or fluctuate in time [124, 176, 44, 121]. Consequently, formalisms have been adapted to represent such an
evolving architecture. A dynamic graph or a temporal graph is a sequence of graphs G1; : : : ; GT in which each
Gi is a graph on the same set of nodes, and each node is mapped to its identity when moving from Gi to Gi+1

[95]. As with other variations on graphs, multiple computational tools such as community detection have
been extended to include these types of dynamics [143, 190, 138]. Moving to simplicial complexes, a dynamic
simplicial complex is similarly a sequence of simplicial complexes on the same node set. Questions about the
topological cavities of simplicial complexes can be answered by using vineyards [224] and zig-zag persistent
homology [131] depending on the types of evolving simplicial complexes. Finally, a dynamic hypergraph
is a sequence of hypergraphs H1; : : : ;HT on the same node set where hyperedges may change from Hi to
Hi+1. At the time of writing, we found few examples of applied dynamic hypergraphs, although we note
that their visualizations have been studied [210]. Nevertheless, we suggest that this particular variation of
hypergraphs could be useful for example in modeling evolving gene interactions, functional relations between
brain regions, and the time-varying structure of social groups.

Multilayer

Often the units or relations of a system have types, categories, or classifications that distinguish them. It is
sometimes useful to distinguish between these types of relations in our representations, and one way to do so
is to use the so-called multilayer variations. Generally, multilayer graphs consist of a set of graphs that may
(or may not) involve the same nodes; each graph in the set comprises a layer. The graph in a given layer
contains relations of exactly one type. Consider a human brain in which two regions might show an increase
in blood flow either due to coupled neuronal activity or due to interactions involving nearby blood vessels
themselves. To encode these two types of relations in a single representation, we could use a multilayer graph
with two layers: one encoding the relations between neurons and another encoding relations between blood
vessels. We note that when all layers contain the same set of nodes and the only interlayer edges that exist
connect nodes to themselves in other layers, the representation is called a multiplex graph [31, 193]. We
invite the interested reader to visit [108, 29] for more rigorous definitions, and [129, 35, 226] for implications
for diffusion and control. Time-evolving systems can be seen as a subtype of multilayer systems, in which
the layers are a set of graphs ordered in time. Previous studies have used multilayer networks to model
complex spreading processes [58, 178, 179, 209], understand explosive word learning [198], and uncover the
community structure of trade relations [11]. Multilayer simplicial complexes or hypergraphs would similarly
include a set of simplicial complexes (respectively, hypergraphs) not necessarily defined on the same nodes
in each layer. As of the time of this writing, we did not find applications yet of this extension. We suggest
that these variations could prove useful for understanding multiple types of biological data collected on a set
of nodes. As an example, one could encode common properties (mutation status, chromatin rearrangements,
etc.) as layers in a multiplex network of cancer cell lines in order to better understand drug response [166].
The multilayer variation is readily applicable whenever researchers have access to and want to model two
different fragments of the same system.

17

Higher Order Networks

Higher Order Networks (HONs) are a variation of the graph formalism that aims to represent a certain kind of
temporal polyadic relations. Instead of encoding system units as nodes, the HON encodes frequent paths or
transitions in the data as nodes, which then allows us to interpret the final representation with the standard
Markovian assumptions on edge sequences. Recall our example of commuting passengers in Figure 3. We
can build a HON from the observed path data to encode the observed dynamics and temporal dependencies
of this system in a particular kind of graph. In Figure 3, the more accurate subway map on the bottom right,
reconstructed from the observed data, contains two nodes that correspond to the physical station D. The one
labeled DB represents the passengers that arrive to D from station B, while DC corresponds to those that
arrive from station C. Similarly, the physical station E splits into two nodes: EDC and EDB . The nodes on
this map do not correspond to the stations observed in the town’s transportation system, but to the possible
passenger pathways through them. Indeed, as observed before, we never observe a passenger commute that
traces the path C �D�E�H: all passengers that pass through stations C �D�E, in that order, then go
on to station F , while all passengers that pass through stations B�D�E, in that order, go on to station H.
Therefore, the representation on the bottom right of Fig. 3, an example of a higher-order network or HON, is
a more faithful representation of the observed data and its temporal dependency. Note that if the observed
passenger data changed to include a route visiting stations C �D�E�H, the structure of the HON would
change, even if the physical brick-and-mortar subway system, and its graph representation, would not. We
discuss HONs in the next subsection and refer the interested reader to [24, 174, 69, 59, 118, 158] for further
details.

Further variations

We note the above variations on the three main formalisms discussed are only the beginnings of possible ways
to extend these representations. Depending on the complex system and questions at hand, certainly one
may combine the variations described above to make, for example, an edge-weighted dynamic network [106],
a weighted multilayer network [130], a multi-order network that combines multiple HONs [182], or another
combination that provides an effective representation. One may also study systems of weighted nodes instead
of weighted edges [192, 140], as well as representations where each node has some kind of internal structure
[48, 71] or possible action [8] . Any of the formalisms above could also lend itself to studying the intricacies of
coupled dynamical systems such as coupled oscillators [155, 147] or interacting threshold-linear models [136].
Indeed when including variations on the three formalisms covered in this review, we find we can encode an
impressive range of complex system types and properties.

Other Formalisms

We recognize that many other formalisms intended for complex systems exist and that those we specifically
mention in this review constitute only a small subset of the possibilities. Other possible formalisms include
graphons, which describe limits of sequences of graphs and can be used to estimate large, noisy systems
[33], metapopulation models which classically describe global behavior of many local species populations
[120, 204, 93] and can be adapted to networks [48], random sequences of sets [25], and sheaves which can
handle added information on each node in a network and have previously been used to frame the network
coding problem [84] and find consensus in sensor networks [52].

3.5 Encoding system dependencies

As we discuss above, the formalism used to encode our data should be carefully chosen to respect any
prominent properties of the system, and specifically the dependencies found therein. In this subsection
we discuss the subtleties of choosing an appropriate formalism, and then review the common practices
that researchers use to encode subset, spatial, and temporal dependencies using the formalisms we have
introduced.

18

Once we have chosen which dependencies to model, it is important to carefully determine when two
or more units in our system are related to each another – i.e. to define the relations in our model (Fig.
7.) Depending on the exact definition of the relations, the resulting representation may or may not exhibit
the desired properties, or it may even exhibit properties not found in the actual system, but coming from
externalities from the data, as discussed in Section 2.4.

For example, consider recording brain activity from an individual as they progress through different
tasks (reading, watching a video, resting, etc.). Different tasks require the activation of distinct sets of
brain regions. How do we define relations between brain regions? As depicted in Fig. 7, we could define
k nodes to be related if a task requires all k nodes to be active. Alternatively, we could define a relation
between k nodes if the k nodes were found to co-activate during a task. Finally we could call two nodes
related if they have a high enough measure of pairwise similarity, perhaps assessed by correlation or mutual
information. Depending on our chosen definition of node relations, our resulting representation either will or
will not encode a subset dependency. In this example, only the definition of node co-firing exhibits a subset
dependency, which we could capture in a simplicial complex representation. Now consider a city bus system
fragment including stations, roads, and bus lines (Fig. 7, bottom). First, we could define a relation between
k nodes (stations) as the sets of stations along an entire bus route. That is, k stations are related if they
together form a whole bus route. This definition would propagate no subset or temporal dependencies to the
representation. Second, we could instead call k nodes related if they share at least one bus line. Consequently
we now have a subset dependency that must be captured by our choice of representation. Third, we might
define two bus stations as related if they are subsequent stops along a route. This third, inherently pairwise,
definition of relation could be represented with a graph. Note that none of these three definitions encode
the temporal dependency, which may or may not be present in the available data. For example, if we had
access to, not only stations’ locations, but also passenger trajectories within the system, we could encode
the temporal dependencies using HONs.

The above examples, and those in reference [195], illustrate the fact that one must carefully choose
relations to effectively encode dependencies, or, equivalently, that whether or not a given representation
exhibits a dependency is a (sometimes subtle) question of semantics. This is to say, the modeling choices
concerning relations, representations, and dependencies are highly, and unavoidably, interdependent on one
another. We must be aware of what dependencies exist in the system, which of those are encoded or
neglected in the representation, and which come from external sources. In the scientific community, these
difficult choices are usually made following the common practices that we delineate next.

Encoding subset dependencies

If a system exhibits subset dependency, it is common practice to use either simplicial complexes or hy-
pergraphs to represent it. In the case when any subset of a set of related units are also related, then an
appropriate formalism is the simplicial complex, since this formalism has the downward inclusion property
(see Section 2.1). In the terms used in Section 2.1, the predicate P is true for any subset of an existing
relation. If instead only some subsets of related units are related, then one could argue that a hypergraph
is the appropriate formalism to use, since it allows for great freedom in encoding relations among subsets
of related units. Equivalently, a particular subset dependency gives a particular choice of the predicate P ,
which in turn induces a particular hypergraph. Recall that the important difference between hypergraphs
and simplicial complexes is the notion of a subedge. Drawing from Remark 3.5 of [195], if a 1-simplex fa; bg
and two 2-simplices fa; b; cg and fa; b; dg exist, then by definition fa; bg is a sub-relation (formally called a
face) of both fa; b; cg and fa; b; dg. However, if instead we had hyperedges fa; bg, fa; b; cg, and fa; b; dg in a
hypergraph, we cannot say if fa; bg is a sub-relation (sub-edge) of fa; b; cg, fa; b; dg, both, or neither. This
connection or lack thereof between relations and sub-relations crucially affects interpretation of the system
representation.

19

